Q1. [Warm-up.] Write down all the permutations in the symmetric group S_{3}. Express your answer in matrix form. For example, the permutation of $\{1,2,3\}$ given by $1 \rightarrow 2,2 \rightarrow 3$ and $3 \rightarrow 1$ is represented in matrix form as

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right] .
$$

Solution:

There are $3!=6$ permutations in S_{3}. In matrix form, the are:

1. $\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right]$
2. $\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right]$
3. $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3\end{array}\right]$
4. $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right]$
5. $\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right]$
6. $\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right]$

Q2. [Multiplication of permutations.] In S_{3}, let

$$
e=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right], \quad s=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right] \quad \text { and } \quad t=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right] .
$$

Determine the following permutations and express your answer in matrix form.
(a) $s e$.
(b) es.
(c) s^{2}. (This is $s s$.)
(d) $s t$.
(e) $t s$.

Solution:

(a) $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right]$.
(b) $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right]$.
(c) $\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right]$.
(d) $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3\end{array}\right]$.
(e) $\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right]$.

Notice that $s t \neq t s$.

Q3. [Cycle notation.] The following are permutations in S_{4} that have been expressed in matrix form. Express them in cycle notation.
(a) $\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{array}\right]$.
(b) $\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3\end{array}\right]$.
(c) $\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1\end{array}\right]$.
(d) $\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1\end{array}\right]$.

Solution:

(a) $(1)(2)(3)(4)$.
(b) (12)(34).
(c) (1234).
(d) $(124)(3)$.

Q4. [Inverses.] Referring back to Q2, determine the following permutations. Express your answers in both matrix form and cycle notation.
(a) e^{-1}.
(b) s^{-1}.
(c) t^{-1}.
(d) $(s t)^{-1}$. [Question: How, if at all, is $(s t)^{-1}$ related to s^{-1} and t^{-1} ?]

Solution:

Let's first express e, s, t in cycle notation. We have:

$$
e=(1)(2)(3), \quad s=(123) \quad \text { and } \quad t=(1)(23) .
$$

(a) $e^{-1}=e$. In matrix form, this is $\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right]$. In cycle notation, this is $(1)(2)(3)$.
(b) $s^{-1}=(321)$. In matrix form, this is $\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right]$.
(c) $t^{-1}=t$. In matrix form, this is $\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right]$. In cycle notation, it's (1)(23).
(d) We've computed that $s t=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3\end{array}\right]$. In cycle notation, this is (12)(3). So its inverse is itself. That is, $(s t)^{-1}=(12)(3)$.
We also notice that $(s t)^{-1}=t^{-1} s^{-1}$. Indeed,

$$
t^{-1}=(1)(23) \quad \text { and } \quad s^{-1}=(321) .
$$

So

$$
t^{-1} s^{-1}=(1)(23)(321)=(12)(3)
$$

The way to think about the fact that $(s t)^{-1}=t^{-1} s^{-1}$ is as follows. If you want to undo the effect of st (which - remember-is: apply t and then apply s) then you should first unapply s then unapply t ! If you put on your socks then shoes, you first take off your shoes then you take off your socks. You don't take off your socks before your shoes! (Right..?)

Q5. [Commutators] An important concept in the proof of the insolvability of the quintic is the notion of commutators of permutations. A commutator of two permutations $s, t \in S_{n}$ is a permutation of the form

$$
t^{-1} s^{-1} t s
$$

Reading from right to left, we interpet this permutation as

$$
\text { perform } s \text {, then perform } t \text {, then unperform } s \text {, then unperform } t \text {. }
$$

Since the order of multiplication in S_{n} is important, the above is not the same as $s^{-1} t^{-1} t s$, which would result in the identity permutation.
(a) Let $s=(12)$ and $t=(13)$ in S_{3}. Find the commutator $t^{-1} s^{-1} t s$.
(b) [Challenging!] Show that (12345) is a commutator of permutations in S_{5}. That is, find permutations s and t in S_{5} such that

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right)=t^{-1} s^{-1} t s
$$

[Hint: There are several possible t and s. Try to find s given that $t=\left(\begin{array}{llll}2 & 3 & 5 & 1\end{array}\right)$.]
Note: A key step in the proof of the insolvability of the quintic is to show that every permutation in S_{5} is a commutator of two other permutations. (This is not true in S_{2}, S_{3} and S_{4}, and is part of the reason why we have quadratic, cubic and quartic formulas!)

Solution:

(a) The inverses of s and t are themselves: $s^{-1}=s$ and $t^{-1}=t$. So,

$$
t^{-1} s^{-1} t s=(13)(12)(13)(12)=(132) .
$$

(b) Starting with $t==\left(\begin{array}{lll}2 & 3 & 5\end{array} 14\right)$, after some trial and error, we arrive at $s=\left(\begin{array}{lll}3 & 1 & 5\end{array} 24\right)$. Indeed,

$$
t^{-1} s^{-1} t s=(41532)(42513)(23514)(31524)=(34512) .
$$

